Refactor frameSorter and datagramBuffer under one interface

pull/71/head
Andy Wang 5 years ago
parent c3ff3f5d1a
commit 2006e5971a

@ -51,12 +51,12 @@ func (d *datagramBuffer) Read(target []byte) (int, error) {
return len(data), nil
}
func (d *datagramBuffer) Write(input []byte) (int, error) {
func (d *datagramBuffer) Write(f Frame) error {
d.rwCond.L.Lock()
defer d.rwCond.L.Unlock()
for {
if d.closed {
return 0, io.ErrClosedPipe
return io.ErrClosedPipe
}
if len(d.buf) <= DATAGRAM_NUMBER_LIMIT {
// if d.buf gets too large, write() will panic. We don't want this to happen
@ -64,12 +64,12 @@ func (d *datagramBuffer) Write(input []byte) (int, error) {
}
d.rwCond.Wait()
}
data := make([]byte, len(input))
copy(data, input)
data := make([]byte, len(f.Payload))
copy(data, f.Payload)
d.buf = append(d.buf, data)
// err will always be nil
d.rwCond.Broadcast()
return len(data), nil
return nil
}
func (d *datagramBuffer) Close() error {

@ -9,15 +9,7 @@ import (
func TestDatagramBuffer_RW(t *testing.T) {
pipe := NewDatagramBuffer()
b := []byte{0x01, 0x02, 0x03}
n, err := pipe.Write(b)
if n != len(b) {
t.Error(
"For", "number of bytes written",
"expecting", len(b),
"got", n,
)
return
}
err := pipe.Write(Frame{Payload: b})
if err != nil {
t.Error(
"For", "simple write",
@ -28,7 +20,7 @@ func TestDatagramBuffer_RW(t *testing.T) {
}
b2 := make([]byte, len(b))
n, err = pipe.Read(b2)
n, err := pipe.Read(b2)
if n != len(b) {
t.Error(
"For", "number of bytes read",
@ -64,7 +56,7 @@ func TestDatagramBuffer_BlockingRead(t *testing.T) {
b := []byte{0x01, 0x02, 0x03}
go func() {
time.Sleep(10 * time.Millisecond)
pipe.Write(b)
pipe.Write(Frame{Payload: b})
}()
b2 := make([]byte, len(b))
n, err := pipe.Read(b2)
@ -97,7 +89,7 @@ func TestDatagramBuffer_BlockingRead(t *testing.T) {
func TestDatagramBuffer_CloseThenRead(t *testing.T) {
pipe := NewDatagramBuffer()
b := []byte{0x01, 0x02, 0x03}
pipe.Write(b)
pipe.Write(Frame{Payload: b})
b2 := make([]byte, len(b))
pipe.Close()
n, err := pipe.Read(b2)

@ -1,156 +0,0 @@
package multiplex
import (
"container/heap"
"io"
log "github.com/sirupsen/logrus"
)
// The data is multiplexed through several TCP connections, therefore the
// order of arrival is not guaranteed. A stream's first packet may be sent through
// connection0 and its second packet may be sent through connection1. Although both
// packets are transmitted reliably (as TCP is reliable), packet1 may arrive to the
// remote side before packet0. Cloak have to therefore sequence the packets so that they
// arrive in order as they were sent by the proxy software
//
// Cloak packets will have a 32-bit sequence number on them, so we know in which order
// they should be sent to the proxy software. The code in this file provides buffering and sorting.
//
// Similar to TCP, the next seq number after 2^32-1 is 0. This is called wrap around.
//
// Note that in golang, integer overflow results in wrap around
//
// Stream.nextRecvSeq is the expected sequence number of the next packet
// Stream.rev counts the amount of time the sequence number gets wrapped
type frameNode struct {
trueSeq uint64
frame *Frame
}
type sorterHeap []*frameNode
func (sh sorterHeap) Less(i, j int) bool {
return sh[i].trueSeq < sh[j].trueSeq
}
func (sh sorterHeap) Len() int {
return len(sh)
}
func (sh sorterHeap) Swap(i, j int) {
sh[i], sh[j] = sh[j], sh[i]
}
func (sh *sorterHeap) Push(x interface{}) {
*sh = append(*sh, x.(*frameNode))
}
func (sh *sorterHeap) Pop() interface{} {
old := *sh
n := len(old)
x := old[n-1]
*sh = old[0 : n-1]
return x
}
type frameSorter struct {
nextRecvSeq uint32
rev int
sh sorterHeap
wrapMode bool
// New frames are received through newFrameCh by frameSorter
newFrameCh chan *Frame
output io.WriteCloser
}
func NewFrameSorter(output io.WriteCloser) *frameSorter {
fs := &frameSorter{
sh: []*frameNode{},
newFrameCh: make(chan *Frame, 1024),
rev: 0,
output: output,
}
go fs.recvNewFrame()
return fs
}
func (fs *frameSorter) writeNewFrame(f *Frame) {
fs.newFrameCh <- f
}
func (fs *frameSorter) Close() error {
fs.newFrameCh <- nil
return nil
}
// recvNewFrame is a forever running loop which receives frames unordered,
// cache and order them and send them into sortedBufCh
func (fs *frameSorter) recvNewFrame() {
// TODO: add timeout
defer log.Tracef("a recvNewFrame has returned gracefully")
for {
f := <-fs.newFrameCh
if f == nil {
return
}
// when there'fs no ooo packages in heap and we receive the next package in order
if len(fs.sh) == 0 && f.Seq == fs.nextRecvSeq {
if f.Closing == 1 {
// empty data indicates closing signal
fs.output.Close()
return
} else {
fs.output.Write(f.Payload)
fs.nextRecvSeq += 1
if fs.nextRecvSeq == 0 { // getting wrapped
fs.rev += 1
fs.wrapMode = false
}
}
continue
}
node := &frameNode{
trueSeq: 0,
frame: f,
}
if f.Seq < fs.nextRecvSeq {
// For the ease of demonstration, assume seq is uint8, i.e. it wraps around after 255
// e.g. we are on rev=0 (wrap has not happened yet)
// and we get the order of recv as 253 254 0 1
// after 254, nextN should be 255, but 0 is received and 0 < 255
// now 0 should have a trueSeq of 256
if !fs.wrapMode {
// wrapMode is true when the latest seq is wrapped but nextN is not
fs.wrapMode = true
}
node.trueSeq = uint64(1<<32)*uint64(fs.rev+1) + uint64(f.Seq) + 1
// +1 because wrapped 0 should have trueSeq of 256 instead of 255
// when this bit was run on 1, the trueSeq of 1 would become 256
} else {
node.trueSeq = uint64(1<<32)*uint64(fs.rev) + uint64(f.Seq)
// when this bit was run on 255, the trueSeq of 255 would be 255
}
heap.Push(&fs.sh, node)
// Keep popping from the heap until empty or to the point that the wanted seq was not received
for len(fs.sh) > 0 && fs.sh[0].frame.Seq == fs.nextRecvSeq {
f = heap.Pop(&fs.sh).(*frameNode).frame
if f.Closing == 1 {
// empty data indicates closing signal
fs.output.Close()
return
} else {
fs.output.Write(f.Payload)
fs.nextRecvSeq += 1
if fs.nextRecvSeq == 0 { // getting wrapped
fs.rev += 1
fs.wrapMode = false
}
}
}
}
}

@ -0,0 +1,9 @@
package multiplex
import "io"
type recvBuffer interface {
io.ReadCloser
Write(Frame) error
Len() int
}

@ -151,7 +151,7 @@ func (sesh *Session) recvDataFromRemote(data []byte) error {
defer sesh.streamsM.Unlock()
stream, existing := sesh.streams[frame.StreamID]
if existing {
stream.writeFrame(frame)
stream.writeFrame(*frame)
return nil
} else {
if frame.Closing == 1 {
@ -166,7 +166,7 @@ func (sesh *Session) recvDataFromRemote(data []byte) error {
// we ignore the error here. If the switchboard is broken, it will be reflected upon stream.Write
stream = makeStream(sesh, frame.StreamID, connId)
sesh.acceptCh <- stream
stream.writeFrame(frame)
stream.writeFrame(*frame)
return nil
}
}

@ -27,9 +27,7 @@ type Stream struct {
session *Session
buf ReadWriteCloseLener
sorter *frameSorter
recvBuf recvBuffer
// atomic
nextSendSeq uint32
@ -49,19 +47,18 @@ type Stream struct {
}
func makeStream(sesh *Session, id uint32, assignedConnId uint32) *Stream {
var buf ReadWriteCloseLener
var recvBuf recvBuffer
if sesh.Unordered {
buf = NewDatagramBuffer()
recvBuf = NewDatagramBuffer()
} else {
buf = NewBufferedPipe()
recvBuf = NewStreamBuffer()
}
stream := &Stream{
id: id,
session: sesh,
buf: buf,
recvBuf: recvBuf,
obfsBuf: make([]byte, 17000),
sorter: NewFrameSorter(buf),
assignedConnId: assignedConnId,
}
@ -70,13 +67,9 @@ func makeStream(sesh *Session, id uint32, assignedConnId uint32) *Stream {
func (s *Stream) isClosed() bool { return atomic.LoadUint32(&s.closed) == 1 }
func (s *Stream) writeFrame(frame *Frame) {
// TODO: refactor this through an interface
if s.session.Unordered {
s.buf.Write(frame.Payload)
} else {
s.sorter.writeNewFrame(frame)
}
func (s *Stream) writeFrame(frame Frame) {
// TODO: Return error
s.recvBuf.Write(frame)
}
// Read implements io.Read
@ -92,15 +85,15 @@ func (s *Stream) Read(buf []byte) (n int, err error) {
if s.isClosed() {
// TODO: Len check may not be necessary as this can be offloaded to buffer implementation
if s.buf.Len() == 0 {
if s.recvBuf.Len() == 0 {
return 0, ErrBrokenStream
} else {
n, err = s.buf.Read(buf)
n, err = s.recvBuf.Read(buf)
log.Tracef("%v read from stream %v with err %v", n, s.id, err)
return
}
} else {
n, err = s.buf.Read(buf)
n, err = s.recvBuf.Read(buf)
log.Tracef("%v read from stream %v with err %v", n, s.id, err)
return
}
@ -142,9 +135,9 @@ func (s *Stream) Write(in []byte) (n int, err error) {
// the necessary steps to mark the stream as closed and to release resources
func (s *Stream) _close() {
// TODO: return err here
atomic.StoreUint32(&s.closed, 1)
s.sorter.Close() // this will trigger frameSorter to return
s.buf.Close()
s.recvBuf.Close()
}
// only close locally. Used when the stream close is notified by the remote

@ -0,0 +1,144 @@
package multiplex
// The data is multiplexed through several TCP connections, therefore the
// order of arrival is not guaranteed. A stream's first packet may be sent through
// connection0 and its second packet may be sent through connection1. Although both
// packets are transmitted reliably (as TCP is reliable), packet1 may arrive to the
// remote side before packet0. Cloak have to therefore sequence the packets so that they
// arrive in order as they were sent by the proxy software
//
// Cloak packets will have a 32-bit sequence number on them, so we know in which order
// they should be sent to the proxy software. The code in this file provides buffering and sorting.
import (
"container/heap"
"errors"
"sync"
)
type frameNode struct {
trueSeq uint64
frame Frame
}
type sorterHeap []*frameNode
func (sh sorterHeap) Less(i, j int) bool {
return sh[i].trueSeq < sh[j].trueSeq
}
func (sh sorterHeap) Len() int {
return len(sh)
}
func (sh sorterHeap) Swap(i, j int) {
sh[i], sh[j] = sh[j], sh[i]
}
func (sh *sorterHeap) Push(x interface{}) {
*sh = append(*sh, x.(*frameNode))
}
func (sh *sorterHeap) Pop() interface{} {
old := *sh
n := len(old)
x := old[n-1]
*sh = old[0 : n-1]
return x
}
type streamBuffer struct {
recvM sync.Mutex
nextRecvSeq uint32
rev int
sh sorterHeap
wrapMode bool
buf *bufferedPipe
}
func NewStreamBuffer() *streamBuffer {
sb := &streamBuffer{
sh: []*frameNode{},
rev: 0,
buf: NewBufferedPipe(),
}
return sb
}
var ClosingFrameReceived = errors.New("closed by closing frame")
// recvNewFrame is a forever running loop which receives frames unordered,
// cache and order them and send them into sortedBufCh
func (sb *streamBuffer) Write(f Frame) error {
sb.recvM.Lock()
defer sb.recvM.Unlock()
// when there'fs no ooo packages in heap and we receive the next package in order
if len(sb.sh) == 0 && f.Seq == sb.nextRecvSeq {
if f.Closing == 1 {
// empty data indicates closing signal
sb.buf.Close()
return ClosingFrameReceived
} else {
sb.buf.Write(f.Payload)
sb.nextRecvSeq += 1
if sb.nextRecvSeq == 0 { // getting wrapped
sb.rev += 1
sb.wrapMode = false
}
}
return nil
}
node := &frameNode{
trueSeq: 0,
frame: f,
}
if f.Seq < sb.nextRecvSeq {
// For the ease of demonstration, assume seq is uint8, i.e. it wraps around after 255
// e.g. we are on rev=0 (wrap has not happened yet)
// and we get the order of recv as 253 254 0 1
// after 254, nextN should be 255, but 0 is received and 0 < 255
// now 0 should have a trueSeq of 256
if !sb.wrapMode {
// wrapMode is true when the latest seq is wrapped but nextN is not
sb.wrapMode = true
}
node.trueSeq = uint64(1<<32)*uint64(sb.rev+1) + uint64(f.Seq) + 1
// +1 because wrapped 0 should have trueSeq of 256 instead of 255
// when this bit was run on 1, the trueSeq of 1 would become 256
} else {
node.trueSeq = uint64(1<<32)*uint64(sb.rev) + uint64(f.Seq)
// when this bit was run on 255, the trueSeq of 255 would be 255
}
heap.Push(&sb.sh, node)
// Keep popping from the heap until empty or to the point that the wanted seq was not received
for len(sb.sh) > 0 && sb.sh[0].frame.Seq == sb.nextRecvSeq {
f = heap.Pop(&sb.sh).(*frameNode).frame
if f.Closing == 1 {
// empty data indicates closing signal
sb.buf.Close()
return ClosingFrameReceived
} else {
sb.buf.Write(f.Payload)
sb.nextRecvSeq += 1
if sb.nextRecvSeq == 0 { // getting wrapped
sb.rev += 1
sb.wrapMode = false
}
}
}
return nil
}
func (sb *streamBuffer) Read(buf []byte) (int, error) {
return sb.buf.Read(buf)
}
func (sb *streamBuffer) Close() error {
return sb.buf.Close()
}
func (sb *streamBuffer) Len() int {
return sb.buf.Len()
}

@ -1,7 +1,6 @@
package multiplex
import (
"bytes"
"encoding/binary"
"time"
@ -10,31 +9,23 @@ import (
"testing"
)
type BufferReaderWriterCloser struct {
*bytes.Buffer
}
func (b *BufferReaderWriterCloser) Close() error {
return nil
}
func TestRecvNewFrame(t *testing.T) {
inOrder := []uint64{5, 6, 7, 8, 9, 10, 11}
outOfOrder0 := []uint64{5, 7, 8, 6, 11, 10, 9}
outOfOrder1 := []uint64{1, 96, 47, 2, 29, 18, 60, 8, 74, 22, 82, 58, 44, 51, 57, 71, 90, 94, 68, 83, 61, 91, 39, 97, 85, 63, 46, 73, 54, 84, 76, 98, 93, 79, 75, 50, 67, 37, 92, 99, 42, 77, 17, 16, 38, 3, 100, 24, 31, 7, 36, 40, 86, 64, 34, 45, 12, 5, 9, 27, 21, 26, 35, 6, 65, 69, 53, 4, 48, 28, 30, 56, 32, 11, 80, 66, 25, 41, 78, 13, 88, 62, 15, 70, 49, 43, 72, 23, 10, 55, 52, 95, 14, 59, 87, 33, 19, 20, 81, 89}
outOfOrderWrap0 := []uint64{1<<32 - 5, 1<<32 + 3, 1 << 32, 1<<32 - 3, 1<<32 - 4, 1<<32 + 2, 1<<32 - 2, 1<<32 - 1, 1<<32 + 1}
sortedBuf := &BufferReaderWriterCloser{new(bytes.Buffer)}
test := func(set []uint64, ct *testing.T) {
fs := NewFrameSorter(sortedBuf)
fs.nextRecvSeq = uint32(set[0])
sb := NewStreamBuffer()
sb.nextRecvSeq = uint32(set[0])
for _, n := range set {
bu64 := make([]byte, 8)
binary.BigEndian.PutUint64(bu64, n)
frame := &Frame{
frame := Frame{
Seq: uint32(n),
Payload: bu64,
}
fs.writeNewFrame(frame)
sb.Write(frame)
}
time.Sleep(100 * time.Millisecond)
@ -42,7 +33,7 @@ func TestRecvNewFrame(t *testing.T) {
var sortedResult []uint64
for x := 0; x < len(set); x++ {
oct := make([]byte, 8)
n, err := sortedBuf.Read(oct)
n, err := sb.Read(oct)
if n != 8 || err != nil {
ct.Error("failed to read from sorted Buf", n, err)
return
@ -59,7 +50,7 @@ func TestRecvNewFrame(t *testing.T) {
goto fail
}
}
fs.Close()
sb.Close()
return
fail:
ct.Error(
Loading…
Cancel
Save